skip to main content


Search for: All records

Creators/Authors contains: "Martin, David C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The commercially available polyelectrolyte complex poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is ubiquitous in organic and hybrid electronics. As such, it has often been used as a benchmark material for fundamental studies and the development of new electronic devices. Yet, most studies on PEDOT:PSS have focused on its electronic conductivity in dry environments, with less consideration given to its ion transport, coupled ionic-electronic transport, and charge storage properties in aqueous environments. These properties are essential for applications in bioelectronics (sensors, actuators), charge storage devices, and electrochromic displays. Importantly, past studies on mixed ionic-electronic transport in PEDOT:PSS neglected to consider how the molecular structure of PSS affects mixed ionic-electronic transport. Herein, we therefore investigated the effect of the molecular weight and size distribution of PSS on the electronic properties and morphology of PEDOT:PSS both in dry and aqueous environments, and overall performance in organic electrochemical transistors (OECTs). Using reversible addition–fragmentation chain transfer (RAFT) polymerization with two different chain transfer agents, six PSS samples with monomodal, narrow ( Đ = 1.1) and broad ( Đ = 1.7) size distributions and varying molecular weights were synthesized and used as matrices for PEDOT. We found that using higher molecular weight of PSS ( M n = 145 kg mol −1 ) and broad dispersity led to OECTs with the highest transconductance (up to 16 mS) and [ μC *] values (∼140 F cm −1 V −1 s −1 ) in PEDOT:PSS, despite having a lower volumetric capacitance ( C * = 35 ± 4 F cm −3 ). The differences were best explained by studying the microstructure of the films by atomic force microscopy (AFM). We found that heterogeneities in the PEDOT:PSS films (interconnected and large PEDOT- and PSS-rich domains) obtained from high molecular weight and high dispersity PSS led to higher charge mobility ( μ OECT ∼ 4 cm 2 V −1 s −1 ) and hence transconductance. These studies highlight the importance of considering molecular weight and size distribution in organic mixed ionic-electronic conductor, and could pave the way to designing high performance organic electronics for biological interfaces. 
    more » « less
  2. null (Ed.)
    We have used Liquid-Phase Transmission Electron Microscopy (LPTEM) to directly image the fundamental processes occurring at the electrode-solution interface during electrochemical deposition of poly(3,4-ethylenedioxythiophene) (PEDOT) from an isotropic 3,4-ethylenedioxythiophene (EDOT) monomer solution. We clearly observed the various stages of the electrodeposition process including the initial nucleation of liquid-like EDOT oligomer droplets onto the glassy carbon working electrode and then the merging, coalesce and growth in size and thickness of these droplets into solid, stable, and dark PEDOT conjugated polymer films. We also used correlative transmitted light optical microscopy to study this process, revealing the change in color of the translucent clusters to the dark polymer film caused by the increase in conjugation length. From our studies we have been able to correlate specific observations of local structure and dynamics to the liquid-like (EDOT oligomer) droplets and solid-like (PEDOT polymer) films including their mobility, mass thickness, edge roughness, size, circularity, and optical absorption. 
    more » « less
  3. Abstract

    Poly(3,4‐ethylenedioxythiophene) (PEDOT) has become a widely used modifier for biomedical electrodes because of its ability to significantly decrease the impedance at low frequencies (below 1 kHz). However, in past studies the role of the solution concentration (ionic conductivity) on the electrochemical impedance behavior has not been well established. Here we describe the electrochemical impedance spectroscopy of the conjugated polymer (PEDOT) using standard screen‐printed electrodes and various standard salt (NaCl) solutions with known conductivities from 1.0E‐2 S/cm to 3.1E‐6 S/cm. Changing the conductivity of the salt solution used for impedance measurements had a dramatic influence on the experimentally obtained spectra. An equivalent circuit consisting of a constant phase element in series with a parallel resistor and second constant phase element was used to match and describe these systems. Our results make it possible to better elucidate the influence of electrode, solution, and polymer coating on the resulting impedance response.

     
    more » « less
  4. null (Ed.)
  5. ABSTRACT We continue to investigate the design, synthesis, and characterization of electrically and ionically active conjugated polythiophene copolymers for integrating a variety of biomedical devices with living tissue. This paper will describe some of our most recent results, including the development of several new monomers that can tailor the surface chemistry, adhesion, and biointegration of these materials with neural cells. Our efforts have focused on copolymers of 3,4 ethylenedioxythiophene (EDOT), functionalized variants of EDOT (including EDOT-acid and the trifunctional EPh), and dopamine (DOPA). The resulting PEDOT-based copolymers have electrical, optical, mechanical, and adhesive properties that can be precisely tailored by fine tuning the chemical composition and structure. Here we present results on EDOT-dopamine bifunctional monomers and their corresponding polymers. We discuss the design and synthesis of an EDOT-cholesterol that combines the thiophene with a biological moiety known to exhibit surface-active behaviour. We will also introduce EDOT-aldehyde and EDOT-maleimide monomers and show how they can be used as the starting point for a wide variety of functionalized monomers and polymers. 
    more » « less